A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs Controlling Rust Resistance
نویسندگان
چکیده
Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM-1 and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Córdoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260.
منابع مشابه
Identification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers
Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...
متن کاملFine Mapping of QTLs for Ascochyta Blight Resistance in Pea Using Heterogeneous Inbred Families
Ascochyta blight (AB) is an important disease of pea which can cause severe grain yield loss under wet conditions. In our previous study, we identified two quantitative trait loci (QTLs) abIII-1 and abI-IV-2 for AB resistance and these QTLs were consistent across locations and/or years in an inter-specific pea population (PR-19) developed from a cross between Alfetta (Pisum sativum) and P651 (P...
متن کاملIdentification of the drought tolerance involved candidate genes in foxtail millet through an integrated meta-analysis approach
Drought stress is one of the most important factors limiting production in the agricultural sector. Due to the need to use smart agriculture adapted to climate change, the use of drought-tolerant alternative plants with high water use efficiency is of great importance. Foxtail millet (Setaria italica L.) is one of the important drought tolerant fodder and food grains in semi-arid regions. In th...
متن کاملGenome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines.
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were pred...
متن کاملIdentification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population
Deployment of cultivars with genetic resistance is an effective approach to control the diseases of powdery mildew (PM) and yellow rust (YR). Chinese wheat cultivar XK0106 exhibits high levels of resistance to both diseases, while cultivar E07901 has partial, adult plant resistance (APR). The aim of this study was to map resistance loci derived from the two cultivars and analyze their effects a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018